Anwendung des Element GD plus in der Edelmetallanalytik

GDMB Chemikerausschuss 2015, Kassel

11.11.2015 | Institut für Materialprüfung Glörfeld GmbH | Thilo Lindemann

Inhaltsverzeichnis

- Grundlagen der Quantifizierung
 - IBR, RSF, StdRSF
- Vergleich von Dauerentladung und Pulser
- Kalibrierung
 - Einschmelzen, Fest/Fest, Fest/Flüssig
 - Kalibriergeraden im Vergleich
 - Nachweisgrenzen
- Vergleich von IBR, StdRSF und Kalibration
- Anwendungsbeispiele
- Zukunftsaussichten

Grundlagen der Quantifizierung

- Abtragung (engl. Sputtern) nicht vollständig reproduzierbar
- → Keine Auftragung von Intensität gegen Konzentration
- Betrachtung des Ionenstromverhältnis IBR (Ion-Beam ratio) von Analyt zu Matrix in Abhängigkeit der Isotopenverteilung

$$IBR_{M}^{A} = \frac{\frac{I_{A}}{f_{A}}}{\frac{I_{M}}{f_{M}}} \approx \frac{m_{A}}{m_{M}} = ppm$$

• Keine Berücksichtigung des Ansprechverhalten von Analyt und Detektor

Grundlagen der Quantifizierung

- Einführung des Relativer Empfindlichkeitsfaktor RSF (engl. relative sensitivity factor)
- Steigung der Kalibriergeraden IBR vs Massenanteil
- Nur gültig für einen bestimmten Analyten in einer bestimmen Matrix

$$w_M^A = IBR_M^A \cdot RSF_M^A$$

- Vorraussetzung:
 - Linearität
 - Ursprungsfunktion

Grundlagen der Quantifizierung

 Standard RSF (StdRSF) - auf Eisenmatrix normierter Relativer Empfindlichkeitsfaktor RSF(Fe)= 1

$$RSF_{M}^{A} = \frac{StdRSF^{A}}{StdRSF^{M}}$$

• StdRSF lässt sich auf andere Matrix Umrechnen

$$StdRSF_{Fe}^{A} = \frac{RSF_{M}^{A}}{RSF_{M}^{Fe}}$$

• Element GD Software beinhaltet eine Tabelle mit StdRSF Werten

Vergleich pGD und cGD

Gepulstes Sputtern trägt nur einen Bruchteil des Probematerial im Vergleich zu kontinuierlicher Glimmentladung ab.

Übliche Paramter:

1 kHz | 50µs Pulsdauer

Gesamte Pulsdauer von 50.000 µs = 50 ms = 5% der Normalen Abtragsrate

Nachteil:

Verlust von Intensität

Vergleich pGD und cGD

| 11.11.2015 | Anwendung des Element GD plus in der Edelmetallanalytik | Thilo Lindemann |

Vergleich pGD und cGD

gmbh

Einschmelzen von Analyten in die Matrix mittels Schleudergussofen.

Vorteile: Anwendbar für breites Spektrum an Analyten Mechanisches Durchmischen beim Ausschleudern Schnelles Erstarren begünstigt die Bildung von Mischkristallen

Nachteile:

Nur bedingt Verwendbar für Alkali, Erdalkalimetalle und Halbmetalle Nicht anwendbar für Nichtmetalle und leicht Flüchtige Elemente Schwierig bei Hochschmelzen Matrixelementen

Fest/ Fest Dotierung

Mischen von Pulverförmigen Analyten mit einer Pulverförmigen Matrix

Sputterfläche von 8 mm Durchmesser Gesamtfläche von 50,24 mm² Messung von 10 ppm ergäbe eine Fläche von 50,24 μm²

 \rightarrow 4 µm maximaler Durchmesser für Analytpulver

Fest/ Flüssig Dortierung

Dotierung von Matrixpulver mit einer Anlytlösung.

Vorteil:

Sehr kleine Analytkonzentration möglich.

Kalibrierung von Halbmetalle, Nichtmetalle sowie Alkali und Erdalkalimetallen

Nachteil: Bedarf vielseitiger Parameter Optimierung Möglichkeit des Entmischen beim Pressen Unterbefunde durch Adsorption des Analyten an der Gefäßwandung

- 1. Auflage für Stahlring
- 2. Führungsrohr für Stempel
- 3. Äußere Hülle
- 4. Tellerferdern

Dotierte Cu- Presslinge Ag, Al, B, Ba, Bi, Ca, Cd, Co, Cr, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Ti, Zn

- Hohe Anforderungen an die Reinheit des Matrixelement und Probleme bei Metallen mit hoher Affinität zu einander.
- Bestimmung der Blindwertkonzentration durch Standartaddition der Blindwerte.
- Ausschluss der zur Standartaddition verwendeten Vergleiche aus der Kalibrierung.

Kalibration von Se in Ag mittels Schleuderguss und cGD

Kalibration von Pd in Ag mittels Schleuderguss und cGD

Kalibration von Ag in Cu mittels Fest/Flüssig Dotierung und Schleuderguss cGD

Nachweisgrenzen

Standartverfahren zur Bestimmung der Nachweisgrenze über Standartabweichung des Blanks

\rightarrow 3 σ Nachweisgrenze 6 σ Bestimmungsgrenze

	BV	/1	BV	V2	BV	V3			+ 1	٧w
	M1	M2	M1	M2	M1	M2	Mw	S	35	6S
Ru102(MR)	0,035	0,028	0,041	0,025	0,036	0,036	0,0337	0,0060	0,0517	0,0697
Rh103(HR)	1,099	1,061	0,919	0,837	1,024	1,117	1,0093	0,1097	1,3385	1,6677
Pd106(MR)	0,520	0,208	0,369	0,235	0,221	0,271	0,3040	0,1209	0,6666	1,0293
Pd106(HR)	0,322	0,160	0,261	0,273	0,289	0,208	0,2521	0,0587	0,4281	0,6041
Ag107(MR)	0,710	0,710	0,733	0,721	0,702	0,676	0,7086	0,0192	0,7663	0,8240
Ir193(MR)	0,000	0,000	0,001	0,001	0,001	0,055	0,0096	0,0223	0,0766	0,1436
lr193(HR)	0,000	0,001	0,000	0,001	0,001	0,030	0,0054	0,0121	0,0416	0,0778
Pt195(MR)	0,015	0,003	0,003	0,024	0,003	0,003	0,0084	0,0091	0,0358	0,0632
Pt196(MR)	0,023	0,001	0,005	0,030	0,001	0,009	0,0114	0,0121	0,0477	0,0841
Au197(MR)	0,111	0,090	0,079	0,078	0,080	0,075	0,0855	0,0134	0,1256	0,1657
Au197(HR)	0,082	0,074	0,075	0,063	0,075	0,062	0,0719	0,0078	0,0952	0,1185

Tab.1: Blindwertmessung und Nachweisgrenzen in ppm

Schlechte NWG bei Rh in Cu Cu63Ar40 m = 102,8920 Rh103 m m = 102,9055

Rh in Cu MR cGD

Rh in Cu HR cGD

Zn64 (m= 63,92915) Isotopenverteilung = 48,63 %

Ni64 (m= 63,9297) Ausweichen auf Zn66 (m= 66,92713) Isotopenverteilung 27,90%

Alternative Überlegung zur Allgemeinen NWG

Entscheidend für die NWG ist das Verhältnis von Blindstrom (Detektorrauschen) und Analyt-Signal.

Betrachtung des Blindstrom beim Sputtern von Cu mittel cGD und pGD

| 11.11.2015 | Anwendung des Element GD plus in der Edelmetallanalytik | Thilo Lindemann

Beobachtung des Blindstrom ohne Sputtervorgang.

Time [min]	cps
0,018	100
0,0354	100
0,0521	0
0,069	0
0,0859	0
[]	
2,9219	0
2,9385	0
2,9719	0
2,9885	0
Average	19
S	45
35	136
6S	273

Signal von 500 cps reicht zur Abhebung vom Untergrund und zur Identifizierung des Analyten

m= 62,9296

Theoretisch errechnete NWG für Peaks > 500 cps

Cu Matrix – Cu63 MR cGD

	cts	IBR [ppm]	RSF	quat [ppb]
Pd106	500	0,218	0,7451	163
Pd108	500	0,225	0,7451	168
Ag107	500	0,115	2,0369	234
Ag109	500	0,124	2,0369	252
Pt194	500	0,181	0,7329	133
Pt195	500	0,176	0,7329	129
Au197	500	0,060	0,8337	50

$$IBR_{M}^{A} = \frac{\frac{I_{A}}{f_{A}}}{\frac{I_{M}}{f_{M}}} \approx \frac{m_{A}}{m_{M}} = ppm$$

f= 0,69174

 $w_M^A = IBR_M^A \cdot RSF_M^A$

Theoretisch errechnete NWG für Peaks > 500 cps

Cu Matrix – Cu63 HR cGD m= 62,9296 f= 0,69174

	cts	IBR [ppm]	RSF	quat [ppb]
Pd106	500	1,055	0,7451	786
Pd108	500	1,089	0,7451	812
Ag107	500	0.556	2.0369	1133
Ag109	500	0 598	2 0369	1219
D+19/	500	0.874	0.7329	641
D+105	500	0,852	0,7320	624
P(195	500	0,852	0,7329	024
Au197	500	0,288	0,8337	240

Theoretisch errechnete NWG für Peaks > 500 cps

Au Matrix – A197 MR cGD m= 196,96656 f= 1

	cts	IBR [ppm]	RSF	quat [ppb]
Cu63	500	0,258	3,16	816
Rh103	500	0.179	0,52	93
Pd106	500	0.653	0.95	621
Ag107	500	0.344	3 31	1140
Ag100	500	0.371	2.25	1205
Agi09	500	0,371	3,25	1205
Pt195	500	0,528	0,76	401
Pt196	500	0,707	0,76	538

Theoretisch errechnete NWG für Peaks > 500 cps

Au Matrix – A197 MR pGD m= 196,96656 f= 1

	cts	IBR [ppm]	RSF	quat [ppb]
Cu63	500	1,205	2,65	3192
Rh103	500	0,833	0,79	658
Pd106	500	3,049	1,35	4116
Ag107	500	1,608	3,28	5273
Ag109	500	1,730	3,16	5468
Pt195	500	2.463	0.94	2315
	200	_,100	0,0 1	
Pt196	500	3,301	0,94	3103

Vergleich von IBR, StdRSF und Kalibration in Au Matrix mittels cGD

		cGD					
		IBR		StdRSF		Kalibration	
	Soll	lst	Differenz	lst	Differenz	lst	Differenz
Fe56 MR	220	354	134	144	76	228	8
Fe56 HR	220	436	216	174	46	229	9
Cu63 MR	326	148	178	346	20	467	141
Cu63 HR	326	152	174	351	25	428	102
Pd106 MR	176	177	1	133	43	168	8
Pd106 HR	176	170	6	127	49	182	6
Ag107 MR	250	77	173	120	130	254	4
Ag107 HR	250	77	173	119	131	252	2
Sb121 MR	190	116	74	220	30	213	23
Sb121 HR	190	116	74	219	29	182	8
Pt196 MR	268	340	72	344	76	257	11
Pt196 HR	268	332	64	337	69	274	6
Pb206 MR	177	297	120	162	15	209	32
Pb206 HR	177	299	122	159	18	145	32
		Summe	1581		757		392

Vergleich von IBR, StdRSF und Kalibration in Au Matrix mittels cGD

	pGD							
		IBR		StdRSF		Kalibration		
	Soll	lst	Differenz	lst	Differenz	lst	Differenz	
Fe56 MR	220	371	151	158	62	222	2	
Fe56 HR	220	499	279	210	10	235	15	
Cu63 MR	326	144	182	360	34	389	63	
Cu63 HR	326	154	172	390	64	408	82	
Pd106 MR	176	153	23	102	74	182	6	
Pd106 HR	176	143	33	105	71	194	18	
Ag107 MR	250	77	173	127	123	254	4	
Ag107 HR	250	83	167	139	111	263	13	
Sb121 MR	190	61	129	124	66	161	29	
Sb121 HR	190	66	124	137	53	176	14	
Pt196 MR	268	288	20	294	26	270	2	
Pt196 HR	268	307	39	310	42	283	15	
Pb206 MR	177	159	18	95	82	140	37	
Pb206 HR	177	180	3	103	74	148	29	
		Summe	1513		892		329	

- Mittels Dokimasie und Kupfersammelschmelze Proben jeglicher Form und Zusammensetzung
- Fast alle Reinmetalle in fester Form bzw pulverförmig sowie Granulate
- Dünne Metallschichten wie Galvanikschichten mittels pGD
- Nicht leitende Pulver mittels Ta-Ring und pGD
- Legierungen
- Tiefenprofilanalyse mittels pGD

Teil einer Graphitfolie welche galvanisch im Au-Bad beschichtet wurde

Mittels cGD ist eine Matrixanalyse nicht möglich

Erst das gepulste Messen bringt die nötige Zeit zur vollständigen Matrixanalyse

Vielen Dank für Ihre Aufmerksamkeit

11.11.2015 Anwendung des Element GD plus in der Edelmetallanalytik Thilo Lindemann

Impressum

Institut für Materialprüfung Glörfeld GmbH Frankenseite 74-76 D-47877 Willich

Tel. 02154-48273-0 Fax 02154-48273-50 info@img-labor.de

Thilo Lindemann LindemannT@img-labor.de

